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In this paper we calculate the potentials of the secondary waves which 

appear in the reflection of a spherical sound wave from the plane divid- 

ing surface between a fluid and a two-component medium, composed of a 

fluid and an elastic component (moist earth, porous sound-absorbing 

materials, pulp, etc. ). The dimensions of pores and solid particles are 

assumed to be small compared to the distances over which the kinematic 

and dynamic characteristics of the motion change significantly, so that 

both components of the medium may be considered to be continua. The 

dynamics of such a medium have been considered in a number of papers 

[l-41. In [51 it was shown that the equations M are the most general 

for the case of harmonic waves. These equations are used as the point of 

departure in the present note. The two-component medium is taken to be 

homogeneous and isotropic. 

Let there be a point source of sound at the point 0 (Fig. 1) in the 

fluid, distance y from the dividing surface. The potential of the re- 

flected wave has the form [61 
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Here kg is the modulus of the wave vector in the fluid, HO(l) is the 

Hankel function of first kind, of zero order, W(8) is the coefficient 

of reflection of a plane wave impinging on the boundary at the angle 8. 

For 8 = 0 this coefficient is equal to [Tl 
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Here Z, = poco is the impedance of the “upper” 
c,, are, respectively, the density and sound speed 
plcl and Z2 = p2c2 are the “effective” impedances 
fluid components of the “loner” 
medium; CI and c2 are the speeds of 
longitudinal waves of first and 

Fig. 1. 
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fluid medium (p,, and 
in the fluid); Z1 = 
of the elastic and 

Fig. 2. 

second type, while the coefficients p1 and pp. which depend on the 
porosities, densities, and elastic parameters of both components of the 
“lower” medium, may be treated as some “effective” densities of those 
components. If shear waves are neglected, equations (2) are 
for incidence at any angle, but now 

20 = Poco sece, 31 = PlCl SecOr, & = Pas SecBJ 

Making use of the relations 

sin8 _ sine1 _ sine, -- 
co Cl Q 

we write equations (2) for W(8) in the form 

Here 

still valid 

(3) 

(4) 

nl = co / cl, nt= cofs, ml = PO I PI, mt = PO 1 Pt 

To obtain the potential of the reflected spherical wave at distances 
large compared to the wave length, an asymptotic form of the Hankel 
function is used 

Ho(‘) (IL) - ~~~e.P[i(u-~)](l+$J (5) 
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Putting (5) In (I), and noting that 

y + yo = RI coseo, f = RI sine0 

we obtain 

where r denotes the integration path, going from the point - l/2 w + ia 

to the point w/2 - im (Fig. 2). The integral in (6) is easily evaluated 
by the method of steepest descent [sl. The path of steepest descent I-,, 
goes through the characteristic point 8, and departs from it along the 
1 ine 

1311 i cos (e - eo) = cos (et - eojoDae* = I, e = et + ie” 

This path intersects the real axis at the point 8, at an angle of 
45O and goes, on one side, to - l/2 w + 8, + im, and, on the other 
f/2 w + 0, - im. 

4 tag2 - sin*0). 

The function W(8) has the roots ,f(ar2 - sin26) and 
and thus the points 8 = It sin-l n1 and 8 = f sin-’ n2 

will be branch points. 

We make cuts in the complex plane along the lines 

Here x_* and x_* are real positive quantities, within the limits 

(0, “I. de value: x1 = 0 correspond to the branch points. For x1’ - a, 
w22 - a), we have, for both cuts, sin 8- f im; 

from here it follows that 8’ - 0. 0” - i 0~. 
These cuts are shown in Fig. 2 (A,B, and A.$$, 

corresponding to the branch points of the 
first and second roots). If the points A, and 
A2 are located between r and To, the integral 
along r will be equal to the integral along 
To plus integrals along the edges of the cuts. 
As a result, the full expression for the re- 
flected wave will be composed of three parts 

Fig. 3. 

where q+, fs the reflected wave proper and ql 
and 'ps are the first and second secondary 
waves. 

For example, in the case where the imaginary parts of n1 and n2 are 
vanishingly small and the real parts are less than unity, we shall have, 
for this location of A, and A2 
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Thus 8, must 

of longitudinal 

The function 

which are found 

be greater than the angles of total internal reflection 

waves of first and second types. 

W(6) also has singular points in the form of poles, 

from the equation 

cos0 + mlI/nla - sin”0 + m2 ‘t/n.j - sina = 0 

If these points lie between r and TO, the expression for the poten- 

tial of the reflected wave will contain, besides the above-mentioned 

parts 9c. 91 and Q~, terms coming from an evaluation of the integrand 

at the poles. This question is not investigated here. 

Evaluation of the integral along TO gives [61 

‘po = Hr 1 
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Here W’(6,) and W”(6,) are derivatives of the coefficient of reflec- 

tion with respect to the angle 6. taken at the point 6 = 8,. 

Neglecting the quantity l/6 kOr sin 8 in (6) in comparison with 

unity, we obtain 

Q1 = ($)“‘exp i.E(j exp mdb c0s (e - eoj] w(e) I/sinde + 
im 

exp [ikoRl cos (0 - Oo)]W+ (f3) J&in80 

Al 

Here W(6) is the value of the coefficient of reflection on the left 

edge of the cut W+(6) on the right edge. These values differ in the sign 

of the root, 4 (RI2 - sin26). Interchanging the limits of integration in 

the first integral, the two integrals are reduced to one 

1Xl 
‘p1 = ko ‘.‘z exp $ 

( ) 
’ 

2nr 1 
exp [iknR1 cos (e - eo)l aI (e) v/sin 8 de (7) 
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Q1 (e) = w+ (e) - w (e) = 4ml cos e 1/Q - sin 28 

(c0se + ma vn2” - siriJtl)2 - ml2 (n12 - sin26) 

The integral in (7) is evaluated by the method of steepest descent 

[61; we deform the path of integration in such a way that, from the 
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point Al, it goes along the line on which the 

gral falls the fastest. This will be the line 

Re co9 (0 - eb) = const 

Here, it is necessary that 

Im cos (0 -00) > 0 

exponent under the inte- 

where 

(8) 

We shall assume !hat n1 is a real quantity. Since at point A1 the 
angle 8 = 6, = sin-’ fll, equation (8) takes the form 

(9) 

Recos(O-OO)=cos(bl-e,,) or cos (eO -e')de" = ~0s (a, -e,) 

On this path of integration (we denote it by r,). condition (9) is 

also satisfied. Thus, we have 

X c u5(e)exp I--- kaRlsin (e0--e~)linhe*]Vsin8e 

Since rl is the path of steepest 

is determined mainly by the initial 

may put 0’ = 6, under the integral, 

that then 

descent, the value of the integral 

portion of the path. Therefore, we 

and assume 0” to be small. Noting 

we obtain 

@)1 (e) = - 4ml cos & 1/-- 2inl cos 15; p=p 
(cos b1 + m2 Vr$ - nla)* 

cpl = - 4ml ($J’” exp iikoR1 cos 0% - eo)l J/-a1 [i + ms $&I_ Q)/ (1 -_ n;l)l’X 

x r exp [-- El “koR1 sin (e0 - S,)] -r/F ide” 
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or, finally 

01 = - 

Zimlnl exp [ ikoR* cos (6, - 00) ] 

k. 1/r cos d1 [I + ma v(ea - nla) / (1 - nla)ll [RI sin (00 - S,)]“~’ 
(IO) 

In a similar way, the potential for the second secondary wave is 

found to be 

2 irnzna exp I ikoRl cos (8s - 6 0) 1 
qJ2 = - 

k. 1/r cos 6s (1 + ml v(nla - n.2) / (1 - n2)la [RI sin (60 - &Jl” 
(11) 

In the limiting cases of vanishing porosity, and of porosity approach- 

ing unity, we will have, respectively, [71 
ml = PO/P,, rn2 = 0, ml = 0, ma = PO ! Pt 
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where ps and pf are the actual densities of the elastic and fluid com- 

ponents of the medium. Then, equations (10) and (11) reduce to the rell- 
known expression for the potential of the secondary wave which appears 
at the dividing boundary between two continuous media. 

The author thanks V.L. German for his suggestion of the problem and 

his interest in the paper. 

1. 

2. 

3. 

4. 

5. 

6. 

7. 

BIBLIOGRAPHY 

Frenkl’ , Ia. I., K teorii seismicheskikh i seismoelektrlcheskikh 
iavlenli vovlazhnol pochve (On the theory of seismic and seismo- 
electric effects in moist earth). Izv. Akad. Nauk SSSR, seriia 

geograf. i geofiz. Vol. 8, NO. 4. 1944. 

Biot, M.A., Theory of propagation of elastic waves in a fluid satu- 
rated porous solid. J. Acoust. Sot. Am. Vol. 28, No. 2, 1956. 

Tswikker, K. and Kosten, K., Zvukopogloshchaiushchie materialy 

(Sound-absorbing Materials). IL, 1952. 

Rakhmatul in, Kh. A. , Osnovy gazodinamiki vzaimopronikaiushchikh dvl- 
zhenii szhimaemykh sred (Foundations of gasdynamics of inter- 
penetrating motions of compressible media). PMM Vol. 20, No. 2, 
1956. 

Kosachevskii, L. Ia., 0 rasprostranenii uprugikh voln v dvukhkompo- 

nentnykh sredakh (On the propagation of elastic waves In two- 
phase media). PMM Vol. 23, No. 6, 1959. 

Brekhovskikh, L. M., Volny v sloistykh sredakh (Waves in stratified 

media). Dokl. Akad. Nauk SSSR 1957. 

Kosachevskii, L. Ia., Ob otrazhenii zvukovykh voln ot sloistykh 
dvukhkomponentnykh sred (On the reflection of sound waves from 
stratified two-component media). PMM Vol. 25, No. 6, 1961. 

Translated by A.R. 


